Transition-Metal Controlled Diastereodivergent Radical Cyclization/Azidation Cascade of 1,7-Enynes

Yingying Zhao,† Yancheng Hu,‡ Haolong Wang, Xincheng Li,* and Boshun Wan*

Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

Supporting Information

ABSTRACT: A strategy for achieving diastereodivergent azidations of enynes has been developed, employing azide transfer from the M–N₃ complex to alkyl radicals. Following this concept, the diastereoselectivity has been switched by modulating the transition metals and the ligands. The Mn(III)-mediated radical cyclization/azidation cascade of 1,7-enynes afforded trans-fused pyrrolo[3,4-c]quinolines, whereas the Cu(II)/bipyridine system gave cis-products.

Diastereodivergent catalysis,† aiming at attaining different diastereomers from the same substrates solely controlled by distinct catalysts, is the most straightforward and efficient tool to produce the complete set of diastereomers. This strategy has been extensively employed to selectively control the formation of stereocenters in asymmetric catalysis.‡ On the other hand, azidation of alkenes has emerged as a promising alternative for the synthesis of useful organic azides, which are valuable precursors of numerous nitrogen-containing compounds.‡ Therefore, the past decade has witnessed substantial achievements in this area.† Despite the impressive advances, the stereocontrol of the product distribution still remains a notable challenge, which may be due to the involvement of the free radical process. In this context, diastereodivergent azidations to generate the complete set of diastereomers is of high demand. In the pioneering works of Kochi,† Fristad,†,‡,§ and Minisci,‖ it is suggested that the terminating step of olefin diazidations proceeds through azide transfer from the metal azide complex to alkyl radicals,‡ namely the “ligand-transfer oxidation” process. Besides, an iron-catalyzed diazidation was disclosed by Xu’s group very recently, in which the azido ligand transfer step was believed to be crucial for its high d.r. value.† Intrigued by these seminal works and our interests in azide chemistry,‖ we speculated that if a radical reaction was terminated by the azide transfer oxidation step, instead of the free radical process, the diastereoselectivity possibly could be switched by modulating the transition metals and the ligands.

In recent years, 1,7-enynes, which are endowed with both $\equiv C\equiv C$ and $\equiv C\equiv C$ unsaturated moieties, have been found to be privileged building blocks for assembling elaborate compounds via radical reaction cascades. For example, Nevado and co-workers* reported various radical-triggered domino cyclizations of enynes, providing highly complex azao-heterocycles through a radical addition/aryl migration/desulfonylation cascade pathway (Scheme 1a). Li,‡ as well as Jiang and Tu†‡ et al. explored the intriguing radical reactivity of N-tethered 1,7-enynes (Scheme 1b). As our continued efforts to exploit new reaction patterns of unsaturated precursors,‖ we envisioned that enynes 1 could undergo an azidyl radical-triggered cyclization/loss of N₂/tautomerization cascade process to form alkyl radical IV, which can be intercepted by LₓM–Nₓ species,† leading to alkyl azides with high diastereoselectivity (Scheme 1c). Indeed, Mn(III)-mediated azidations of N-sulfonyl tethered 1,7-enynes 1 afforded trans-fused pyrrolo[3,4-c]quinolines (trans-2), whereas the Cu(II)/bipyridine system gave cis-products (Scheme 1d). Although Li et al. has already reported an analogous Cu-catalyzed azidation of enynes for the synthesis of cis-2,‖ additional multistep reactions were required to synthesize azido-benzodioxolone, which served as the azide source in the work. Besides being easily handled and commercially available, TMSN$_3$ was proven to be ineffective for the reaction. Given the step economy, simple operation, and opposite selectivity of our protocol, we herein demonstrate Mn- and Cu-controlled diastereodivergence in the radical bicyclization/azidation cascade of enynes.

We commenced our investigations using N-sulfonyl tethered 1,7-enyne 1a as a benchmark substrate and commercially available TMSN$_3$ as an azide source. When 3.0 equiv of Mn(OAc)$_3$·2H$_2$O were employed as the radical initiator, to our delight, trans-fused pyrrolo[3,4-c]quinoline 2a,‡ was obtained in 53% yield, albeit with moderate diastereoselectivity (Table 1, entry 1). In contrast, commonly used oxidant K$_2$S$_2$O$_8$ gave poor results, which possibly was ascribed to the free radical process in its terminating step (Table 1, entry 2). The utilization of TBPB as an oxidant generated no desired product (Table 1, entry 3). Notably, treatment of 1a with substoichiometric Mn(OAc)$_3$·2H$_2$O and 2.0 equiv of TBPB also produced trans-2a in a comparable yield (Table 1, entry 4), which prompted us to evaluate other transition metals. The results demonstrated that Fe(II) could execute this reaction, but were inferior to Mn(III) (Table 1, entry 5). Surprisingly, cis-2a is predominant in the product mixture when Cu(ClO$_4$)$_2$·6H$_2$O was introduced to the reaction (Table 1, entry 6). After screening various oxidants, we were delighted to find that NFSI led to trans-2a in 15:1 d.r. and

Received: March 30, 2016
Published: April 29, 2016

© 2016 American Chemical Society
67% yield (Table 1, entries 7–11). The introduction of ligands exerted a negative influence on the results (Table 1, entries 12, 13). In comparison, the combination of Cu(II) and a N,N-bidentate ligand, such as phen and bipy, could drastically increase the selectivity and cis-2a was observed as the single isomer; the latter ligand yielded a slightly better result (Table 1, entries 14, 15).

With the optimized conditions in hand, we next explored the scope and limitations of the Mn(III)- and Cu(II)-mediated radical cyclization/azidation cascade of enynes 1. As summarized in Table 2, variations of R at the terminal alkyne were first examined. A wide array of substituted aromatic groups were well tolerated, providing both trans- and cis-2 in moderate to good yields (Table 2, entries 2–8). The electronic properties and the positions of the substituents on the phenyl ring had only minimal influence on the reactivity. For example, electron-rich substrates 1b, 1c, and 1e underwent this diastereodivergent reaction smoothly, furnishing the corresponding diastereomers with good selectivity, regardless of the steric effects. Electron-deficient substituents, such as F, Cl, and Br, on the phenyl ring were also compatible with the transformations (Table 2, entries 4, 6–8). It is worthwhile to mention that treatment of 1g with the Cu(II)/bipy/TBPB system only delivered the cis-isomer in 38% yield and 75% conversion, which was due to the poor solubility under the
Table 1. Optimization of the Reaction Conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>transition metal</th>
<th>oxidant</th>
<th>yield a [%]</th>
<th>d.r. b (trans/cis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1°</td>
<td>Mn(OAc)2·2H2O</td>
<td>–</td>
<td>53</td>
<td>5.6:1</td>
</tr>
<tr>
<td>2°</td>
<td>–</td>
<td>K2S2O8</td>
<td>25</td>
<td>1.8:1</td>
</tr>
<tr>
<td>3°</td>
<td>–</td>
<td>TBPB</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>4</td>
<td>Mn(OAc)2·2H2O</td>
<td>TBPB</td>
<td>45</td>
<td>8.6:1</td>
</tr>
<tr>
<td>5</td>
<td>Fe(OAc)2</td>
<td>TBPB</td>
<td>30</td>
<td>1:1</td>
</tr>
<tr>
<td>6</td>
<td>Cu(CIO4)2·6H2O</td>
<td>33 (cis)</td>
<td>1:3:6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Mn(OAc)2·2H2O</td>
<td>K2S2O8</td>
<td>14</td>
<td>2.4:1</td>
</tr>
<tr>
<td>8</td>
<td>Mn(OAc)2·2H2O</td>
<td>TBHP</td>
<td>10</td>
<td>6.6:1</td>
</tr>
<tr>
<td>9</td>
<td>Mn(OAc)2·2H2O</td>
<td>Bi-OH</td>
<td>38</td>
<td>5.7:1</td>
</tr>
<tr>
<td>10</td>
<td>Mn(OAc)2·2H2O</td>
<td>Selectfluor</td>
<td>38</td>
<td>7:2:1</td>
</tr>
<tr>
<td>11</td>
<td>Mn(OAc)2·2H2O</td>
<td>NF5I</td>
<td>67 (trans)</td>
<td>15:1</td>
</tr>
<tr>
<td>12</td>
<td>Mn(OAc)2·2H2O</td>
<td>NF5I</td>
<td>39 (trans)</td>
<td>4:4:1</td>
</tr>
<tr>
<td>13</td>
<td>Mn(OAc)2·2H2O</td>
<td>NF5I</td>
<td>35 (trans)</td>
<td>4:7:1</td>
</tr>
<tr>
<td>14</td>
<td>Cu(CIO4)2·6H2O</td>
<td>TBPB</td>
<td>59 (cis)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Cu(CIO4)2·6H2O</td>
<td>TBPB</td>
<td>64 (cis)</td>
<td></td>
</tr>
</tbody>
</table>

aReaction conditions: 1a (0.10 mmol), Mn(OAc)2·2H2O (30 mol %), ligand (33 mol % when added), TMSN3 (6.0 equiv), and oxidant (2.0 equiv) in CH3CN (2.0 mL) at 80 °C for 22 h. bDetermined by HPLC analysis of the crude reaction mixture before isolation. Naphthalene was used as the internal standard. cMn(OAc)2·2H2O or oxidant (3.0 equiv) was employed. d cis-2a was observed as the single isomer. TBPB = tert-Butyl peroxybenzoate. TBHP = tert-Butyl hydroperoxide.

standard conditions. However, no desired products were observed when submitting butyl substituted enyne 1ii to the standard conditions. Substrates possessing different substituents on the alkyne moiety were readily converted into the complete set of diastereomers in high efficiencies (Table 2, entries 10, 11). Notably, N-Ms tethered enyne 1ii afforded trans- and cis-2i in 64% and 54% yield under the optimized conditions, respectively. Surprisingly, both Mn(III)- and Cu(I)-mediated reactions of N-alkyl substrates 1m and 1n led to the formation of cis-products. An electron-donating alkyl substituent presumably changes the inherent properties of the substrates, and its less steric hindrance tends to make the cyclized rings too flexible to facilitate the coordination of the manganese complex and the nitrogen atoms, thus affording the same selectivity.

To gain further insights into the diastereodivergent azidation reaction, some mechanistic experiments were conducted. Subjecting TEMPO or BHT, well-known radical scavengers, to the reaction system led to complete inhibition of this diastereodivergent process, implying that a free-radical-mediated pathway is involved (eq 1). Additionally, when a mixture of LiCl (6.0 equiv), Mn(OAc)2·2H2O (3.0 equiv), and TMSN3 (1.0 equiv) was introduced to the reaction system, chloro-substituted product 3a was observed, explicitly illustrating that the Mn(III)–Cl complex is formed and then undergoes chloro-ligand transfer oxidation process to deliver 3a (eq 2). As a consequence, we believe that L-M-N3 species is in situ formed and then involved in the d.r.-determining step, which is in accordance with our initial hypothesis.

On the basis of these experimental observations, a plausible mechanism is presented in Scheme 2. Initially, TMSN3 is oxidized by high-valent transition metals to produce a free azidyl radical, which then attacks the alkene moiety of enyne 1i, giving alkyl radical I (pathway a). It is noteworthy that direct azide transfer from a metal azide complex to alkene cannot be ruled out (pathway b). Radical-triggered 6-exo-dig cyclization of I affords vinyl radical II, which can be further trapped by the azidyl group, followed by releasing one molecule of nitrogen to generate aminyl radical III. The tautomer of III, alkyl radical IV, undergoes an inner-sphere azide transfer oxidation process, rather than a free azidyl radical pathway, to deliver the desired product 2. The oxidation of low-valent metals Mn(II) and Cu(I) by NF5I and TBPB regenerates the catalysts.

Although we have no direct rationale regarding the coordination modes between the transition-metal complex and the substrate, a tentative model for the diastereodivergence is depicted in Scheme 3. In the case of the Mn-mediated reaction, Mn−N3 possibly also coordinates with the nitrogen atoms of intermediate IV, following azide transfer to produce trans-2. When Cu was introduced to the reaction, the pronounced steric repulsion between phenyl and azide group enables the azide attack on the opposite side, thus providing cis-2.

In summary, we have developed a strategy for achieving diastereodivergent azidations of enynes, employing azide transfer from the M−N3 complex to alkyl radicals. Following this concept, the diastereoselectivity has been switched by modulating the transition metals and the ligands. The Mn(III)-mediated radical cyclization/azidation cascade of 1,7- enynes afforded trans-fused pyrrolo[3,4-c]quinolinolines, whereas the Cu(II)/bipyridine system gave cis-products. Further studies on the azide transfer oxidation mechanism are underway in our laboratory.

EXPERIMENTAL SECTION

General Information

Unless otherwise stated, all manipulations and reactions were performed under an inert atmosphere using standard Schlenk techniques or in an argon-filled glovebox. All chemicals were purchased from commercial sources and were used without further purification. Solvents were treated prior to use according to the standard methods. Column chromatography was carried out on silica gel (200–300 mesh) using a forced flow of eluent at 0.3–0.5 bar of pressure. NMR spectra were recorded at room temperature in CDCl3 on 400 MHz spectrometers. The chemical shifts for 1H NMR were determined by ESI on a Q-TOF mass spectrometer.

General Procedure for the Synthesis of Enynes 1. Ts-protected 2-(phenylethynyl)aniline iii was prepared according to the reported method.14 60% NaH in mineral oil (2 equiv, 20 mmol, 0.80 g) was slowly added to a solution of iii (10 mmol) in 40 mL of THF, and the mixture was stirred 30 min at 0 °C; then, methacryloyl chloride (2 equiv, 20 mmol, 2.0 mL) was added and stirred overnight. The reaction was quenched with saturated NH4Cl, and the solution was extracted with ethyl acetate three times. The combined organic phases were dried with anhydrous Na2SO4, and the solvent was concentrated via rotary evaporation. The crude residue was recrystallized with EtOH to afford I as a white or yellow solid.

N-(2-(Phenylethynyl)phenyl)-N-tosylmethacrylamide (Ia). White solid; 60 g (in 16.0 mmol scale); 86% yield; mp 127–128 °C; 1H NMR...
Table 2. Substrate Scope of Diastereodivergent Radical Cyclization/Azidation Cascade of 1,7-Enynesa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enyne 1</th>
<th>Condition A</th>
<th>Condition B</th>
<th>Entry</th>
<th>Enyne 1</th>
<th>Condition A</th>
<th>Condition B</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>trans-2a, 59% d.r.</td>
<td>cis-2a, 59%</td>
<td>8</td>
<td>th</td>
<td>trans-2h, 65% d.r.</td>
<td>cis-2h, 63%</td>
</tr>
<tr>
<td>2</td>
<td>1b</td>
<td>trans-2b, 59% d.r.</td>
<td>cis-2b, 59%</td>
<td>9</td>
<td>ti</td>
<td>trans-3i, 70% d.r.</td>
<td>cis-3i, 67%</td>
</tr>
<tr>
<td>3</td>
<td>1c</td>
<td>trans-2c, 49% d.r.</td>
<td>cis-2c, 44%</td>
<td>10</td>
<td>tj</td>
<td>trans-3j, 70% d.r.</td>
<td>cis-3j, 53%</td>
</tr>
<tr>
<td>4</td>
<td>1d</td>
<td>trans-2d, 65% d.r.</td>
<td>cis-2d, 78%</td>
<td>11</td>
<td>tk</td>
<td>cis-3k, 65% d.r.</td>
<td>cis-3k, 58%</td>
</tr>
<tr>
<td>5</td>
<td>1e</td>
<td>trans-2e, 65% d.r.</td>
<td>cis-2e, 59%</td>
<td>12</td>
<td>tm</td>
<td>cis-3m, 60% d.r.</td>
<td>cis-3m, 85%</td>
</tr>
<tr>
<td>6</td>
<td>1f</td>
<td>trans-2f, 65% d.r.</td>
<td>cis-2f, 63%</td>
<td>13</td>
<td>tn</td>
<td>cis-3n, 60% d.r.</td>
<td>cis-3n, 86%</td>
</tr>
<tr>
<td>7</td>
<td>1g</td>
<td>trans-2g, 64% d.r.</td>
<td>cis-2g, 38%</td>
<td>14</td>
<td>tni</td>
<td>cis-3ni, 19% d.r.</td>
<td>cis-3ni, 75%</td>
</tr>
</tbody>
</table>

aCondition A: 1 (0.20 mmol), Mn(OAc)$_3$·2H$_2$O (30 mol %), NFSI (2.0 equiv), TMSN$_3$ (6.0 equiv), CH$_3$CN (4.0 mL), 80 °C for 22 h; d.r. (trans/cis) value was determined by HPLC analysis of the crude reaction mixture before being isolated. Condition B: 1 (0.20 mmol), Cu(ClO$_4$)$_2$·6H$_2$O (30 mol %), Bipy (33 mol %), TBPB (2.0 equiv), TMSN$_3$ (6.0 equiv), CH$_3$CN (4.0 mL), 80 °C for 22 h; cis-2 was observed as the single isomer. bMn(OAc)$_3$·2H$_2$O (3.0 equiv) was employed in the reaction. cYield was calculated on the basis of 0.20 mmol of the product, and 25% of starting substrate 1g was recovered. dTrans-isomer was not observed.
N-(2-(o-Tolylethynyl)phenyl)-N-tosylmethacrylamide (1b). White solid; 833.0 mg (in 3.2 mmol scale); 53% yield; mp 125−126 °C; 1H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 8.3 Hz, 2H), 7.57 (dd, J = 7.7, 1.3 Hz, 1H), 7.51 (dd, J = 7.2, 2.0 Hz, 1H), 7.46−7.35 (m, 2H), 7.22−7.15 (m, 1H), 7.12 (d, J = 8.4 Hz, 1H), 7.07−7.00 (m, 3H), 7.07 (d, J = 7.6 Hz, 1H), 5.26 (s, 1H), 5.22 (s, 1H), 2.30 (s, 3H), 2.10 (s, 3H), 1.77 (s, 3H). 13C{1H} NMR (100 MHz, CDCl₃) δ 170.6, 144.8, 139.2, 138.9, 136.3, 132.8, 132.7, 131.5, 130.0, 129.2, 129.01, 128.97, 128.8, 128.1, 123.8, 123.5, 122.09, 94.9, 85.6, 21.5, 19.3. HRMS (ESI) calcd for C₂₆H₂₄NO₃S [M + H]⁺ 430.1471, found 430.1478.
The Journal of Organic Chemistry

N-(2-(2-Methoxyphenyl)ethyl)phenyl)-N-tosylmethacrylamide (1c).

N-(2-(3-Fluorophenyl)ethyl)phenyl)-N-tosylmethacrylamide (1d).

N-(2-(Tolylyl)phenyl)-N-tosylmethacrylamide (1e).

N-(2-(4-Fluorophenethyl)phenyl)-N-tosylmethacrylamide (1f).

N-(2-(4-Chlorophenethyl)phenyl)-N-tosylmethacrylamide (1g).

N-(2-(3-Methoxyphenyl)phenyl)-N-tosylmethacrylamide (1h).

N-(2-(Hex-1-ynyl)phenyl)-N-tosylmethacrylamide (1i).

N-(2-Bromoethyl)phenyl)-N-tosylmethacrylamide (1j).

N-(4-Chloroethyl)phenyl)-N-tosylmethacrylamide (1k).

N-Methyl-N-(2-(phenylethynyl)phenyl)-N-tosylmethacrylamide (1m).

N-(Methylsulfonyl)N-(2-(phenylethynyl)phenyl)-N-tosylmethacrylamide (1n).

Representative Procedure for the Synthesis of Trans-Products.

- trans-9b-Azido-3a-methyl-1-o-toly-5-tosyl-5,9b-dihydro-3H-pyrrolo[3,4-c]quinolin-4(3aH)-one (trans-2a).
- trans-9b-Azido-3a-methyl-1-phenyl-5-tosyl-5,9b-dihydro-3H-pyrrolo[3,4-c]quinolin-4(3aH)-one (trans-2b).
trans-9b-Azido-1-(2-methoxyphenyl)-3a-methyl-5-tosyl-9b-dihydro-3H-pyrrolo[3,4-c]quinolin-4(3aH)-one (trans-2b). White solid; 52.8 mg; 54% yield; mp 154–155 °C; 1H NMR (400 MHz, CDCl3) δ 7.94 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.2 Hz, 1H), 7.46–7.38 (m, 2H), 7.30 (d, J = 8.2 Hz, 2H), 7.27–7.25 (m, 2H), 7.24–7.19 (m, 2H), 7.12–7.06 (m, 1H), 4.43 (d, J = 16.4 Hz, 1H), 3.98 (d, J = 16.4 Hz, 1H), 2.43 (s, 3H), 2.40 (s, 3H), 1.32 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 172.9, 171.0, 145.7, 138.6, 133.4, 131.8, 131.0, 129.7, 129.6, 126.0, 126.5, 79.7, 63.5, 42.8, 20.7. HRMS (ESI) calcd for C26H24N5O4S [M + H]+ 506.1125, found 506.1124.

Representative Procedure for the Synthesis of cis-Product. To a sealed tube were added enynes (1.0 mmol), Cu(OAc)2, 4H2O (30 mol %), bipyrindene (33 mol %), and MeCN (4 mL) in sequence. Subsequently TBBP (2 equiv) and TMSN3 (6 equiv) were introduced to the mixture. The resulting dark solution was stirred at 80 °C for 22 h. Upon completion, the reaction was quenched by saturated NaHCO3 and extracted with ethyl acetate three times. The combined organic layers were dried with anhydrous Na2SO4. Then the solvent was removed, and purification by flash chromatography on silica gel (petroleum ether/EtOAc: 10:1) afforded the desired products cis-2.

cis-9b-Azido-3a-methyl-1-o-tolyl-5-tosyl-9b-dihydro-3H-pyrrolo[3,4-c]quinolin-4(3aH)-one (cis-2a). White solid; 32.2 mg; 64% yield; mp 155–156 °C; 1H NMR (400 MHz, CDCl3) δ 7.91 (d, J = 7.2 Hz, 1H), 7.73–7.66 (m, 3H), 7.61 (d, J = 7.5 Hz, 2H), 7.50–7.41 (m, 2H), 7.40–7.32 (m, 3H), 7.21 (d, J = 8.1 Hz, 2H), 4.32 (d, J = 16.5 Hz, 1H), 3.79 (d, J = 16.5 Hz, 1H), 2.42 (s, 3H), 1.22 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 172.8, 170.3, 145.7, 134.9, 133.0, 132.5, 131.4, 129.8, 129.40, 128.9, 128.8, 128.5, 128.2, 126.4, 124.1, 122.7, 78.6, 69.3, 61.1, 21.9, 14.2.

cis-9b-Azido-3a-methyl-1-tolyl-5-tosyl-9b-dihydro-3H-pyrrolo[3,4-c]quinolin-4(3aH)-one (cis-2c). White solid; 56.0 mg; 64% yield; mp 177–178 °C; 1H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 6.9 Hz, 2H), 7.71 (d, J = 8.2 Hz, 1H), 7.63–7.52 (m, 3H), 7.47–7.41 (m, 1H), 7.22 (dd, J = 7.7, 1.3 Hz, 1H), 7.13 (t, J = 7.5 Hz, 1H), 4.33 (d, J = 16.3 Hz, 1H), 4.06 (d, J = 16.3 Hz, 1H), 3.59 (s, 3H), 0.86 (s, 3H). 13C{1H} NMR (100 MHz, CDCl3) δ 171.9, 169.7, 136.8, 133.7, 131.5, 129.8, 129.7, 127.9, 126.5, 126.0, 125.8, 79.7, 63.5, 42.8, 20.7. HRMS (ESI) calcd for C26H24N5O3S [M + H]+ 502.1154, found 502.1158.
cis-9b-Azido-3a-methyl-5-(methylsulfonyl)-1-phenyl-5,9b-dihydro-3H-pyrrolo[3,4-c]quinolin-4(3aH)-one (cis-2I).

The authors declare no competing financial interests.

Note

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b00655.

Crystallographic data for trans-2a (CIF)

Examples, see: (b) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M.

Author Contributions

Y.Z. and Y.H. contributed equally.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Natural Science Foundation of China (21572225) for financial support.

REFERENCES

(3) For incorporation of various functional groups into alkenel azidation, see: (a) Sun, X.; Li, X.; Song, S.; Zhu, Y. C.; Liang, Y. F.; Liu, J. N. Angew. Chem. 2015, 137, 6059 and references cited therein.

(14) CCDC 1449869 (trans-2a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center.